THE EFFECT OF NMDA-RECEPTOR ANTAGONIST ON CARBOHYDRATE AND LIPID METABOLISM MARKERS IN SYRIAN GOLDEN HAMSTERS UNDER EXPERIMETAL INSULIN RESISTANCE SYNDROME AND DIABETES MELLITUS

Authors

DOI:

https://doi.org/10.21856/j-PEP.2021.4.10

Keywords:

diabetes mellitus, insulin resistance, memantine, NMDA receptors, metformine.

Abstract

Background. Diabetes mellitus (DM) is a significant cause of the premature mortality and nowadays a problem of this pathology effective treatment remains relevant. A number of studies have demonstrated the potential role of pancreatic NMDA receptors in glucose-stimulated insulin secretion. The purpose was to study the effect of NMDA-receptor antagonist memantine on carbohydrate and lipid metabolism in Syrian golden hamsters under experimental DM and insulin resistance syndrome (IR).

Materials and Methods. The study was conducted on Syrian golden male hamsters. IR syndrome and DM were modelled in animals. Animals were administered metformin, an NMDA receptor antagonist memantine, or combination of medicines for 2 weeks. Carbohydrate and lipid metabolism markers were determined in blood serum.

Results. It was found that significant hyperglycemia and hyperinsulinemia, hypertriacylglycerolemia, hypercholesterolemia and proatherogenic changes in the cholesterol content in lipoproteins were observed in animals under the conditions of experimental model pathologies comparison with the intact control group.

Metformin administration corrected hyperglycemia in IR and DM, but normalization of the insulin level occurred only under IR. Memantine significantly reduced the HOMA-IR index relative to untreated animals (p˂0.01) under both pathologies. The combined administration of the medicines was accompanied by a correction of glycemia and insulinemia to the intact control level and a significant decrease in the HOMA-IR index statistically significant to the untreated group (p˂0.01).

The metformin administration under IR leads to a correction of hypertriacylglycerolemia and LDL cholesterol (LDL-cholesterol), while under DM there was a decrease of lipid metabolism all markers. Memantine monotherapy under both pathologies leads to a significant decrease of LDL-cholesterol only, and under DM memantine exceeded the metformin effectiveness.

The combined administration of the medicines under IR significantly normalized the total cholesterol, triacylglycerols and LDL-cholesterol content relative to untreated animals, and under DM these markers significantly exceeded similar markers in the metformin-treated group.

Conclusions. Memantine is promising for further study as a potential antidiabetic medicine.

Key words: diabetes mellitus, insulin resistance, memantine, NMDA receptors, metformine.

References

National Diabetes Statistics Report, 2020. Centers for Disease Control and Prevention, available at: https://www.cdc.gov.

Briukhanova T, Zagayko A, Lytkin D. Pathologia 2020;17(2): 256-263. https://doi.org/10.14739/2310-1237.2020.2.212812.

Bornstein S, Rubino F, Khunti K, et al. Lancet. Diabetes & endocrinology 2020;8(6): 546-550. https://doi.org/10.1016/S2213-8587(20)30152-2.

Maddaloni E, Buzzetti R. Diab Metab: research and reviews 2020: e33213321. https://doi.org/10.1002/dmrr.3321.

Šterk M, Bombek KL, Klemen SM, et al. PLOS Computational Biology 2021;17(5): e1009002. https://doi.org/10.1371/journal.pcbi.1009002.

Huang XT, Li C, Peng XP, et al. Sci Rep 2017;7: article 44120. https://doi.org/10.1038/srep44120.

Marquard J, Otter S, Welters A, et al. Nat Med 2015;21: 363-372. https://doi.org/10.1038/nm.3822.

Wang XP, Ye P, Lv J, et al. Neurochem Res 2019;44: 978-993. https://doi.org/10.1007/s11064-019-02733-4.

Hashimoto K. The NMDA receptors. Cham: Springer International Publishing AG 2017: 148 р. https://doi.org/10.1007/978-3-319-49795-2.

Mak S, Liu Z, Wu L, et al. ACS Chemical Neuroscience 2020;11 (3): 314-327. https://doi.org/10.1021/acschemneuro. 9b00242.

Guide for the care and use of laboratory animals, 8-th ed, Washington, 2011: 246 р.

Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. OJEU 2010;L276: 33-79.

Li G, Liu X, Zhu H, et al. Comparative Med 2009;59(5): 449-458.

Li M, Hu X, Xu Y, et al. Int J Endocrinol 2019: 3248527. https://doi.org/10.1155/2019/3248527.

Lytkin D, Zagayko A, Briukhanova T. Regulatory Mechanism in Biosystems 2018;9 (2): 209-215. https://doi.org/10.15421/021831.

Nair AB, Jacob S. J Basic Clin Pharm 2016;7(2): 27-31. https://doi.org/10.4103/0976-0105.177703.

Ammerlaan W, Trezzi J, Lescuyer P, et al. Biopreservation and Biobanking 2014;4(12): 269-280. http://doi.org/10.1089/bio.2014.0003.

França C, Mendes C, Ferreira C. Braz J Med Biol Res 2018;51(3): аrticle e6955. http://doi.org/10.1590/1414-431X20176955.

Nummer S, Weeden A, Shaw C, et al. Methods X 2018;5: 304-311. https://doi.org/10.1016/j.mex.2018.03.011.

HOMA Calculator. The Oxford Centre for Diabetes, Endocrinilogy and Metabolism, available at: www.dtu.ox.ac.uk/homacalculator/index.php.

Indrayan A, Malhotra KR. Medical biostatistics. 4th ed. Boca Raton, 2018: 685 p.

Welters A, Klüppel C, Mrugala J, et al. Diabetes Obes Metab 2017;19: 95-106. https://doi.org/10.1111/dom.13017.

Khalaf S, Hafez M, Mehanna E, et al. Naunyn-Schmiedeberg's Arch Pharmacol 2019;392(6): 685-695. https://doi.org/10.1007/s00210-019-01616-3.

Imai R, Misaka S, Horita S, et al. BMC Res Notes 2018;11(614). https://doi.org/10.1186/s13104-018-3715-9.

Huang X, Yang J, Wang Z, et al. Theranostics 2021;11(5): 2247-2262. https://doi.org/10.7150/thno.51666.

Lockridge A, Gustafson E, Wong A, et al. Cells 2021;10(1): 93. https://doi.org/10.3390/cells10010093.

Krasil'nikova I, Surin A, Sorokina E, et al. Front Neurosci 2019;13: 1027. https://doi.org/10.3389/fnins.2019.01027.

Ettcheto M, Sánchez-López E, Gómez-Mínguez Y, et al. Mol Neurobiol 2018;55(9): 7327-7339. https://doi.org/10.1007/s12035-018-0868-4.

Deng S, Yan Y, Zhu T, et al. Front Psychiatry 2019;10: 15. https://doi.org/10.3389/fpsyt.2019.00015.

Sasaki T, Matsui S, Kitamura T. Int J Mol Sci 2016;7(7): 1081. https://doi.org/10.3390/ijms17071081.

Kaabia Z, Poirier J, Moughaizel M, et al. Sci Rep 2018; 8: 15893. https://doi.org/10.1038/s41598-018-34329-3.

Downloads

Published

2021-12-03

How to Cite

Брюханова, Т., Литкін, Д., Загайко, А., & Бондарева, А. (2021). THE EFFECT OF NMDA-RECEPTOR ANTAGONIST ON CARBOHYDRATE AND LIPID METABOLISM MARKERS IN SYRIAN GOLDEN HAMSTERS UNDER EXPERIMETAL INSULIN RESISTANCE SYNDROME AND DIABETES MELLITUS. Problems of Endocrine Pathology, 78(4), 72-79. https://doi.org/10.21856/j-PEP.2021.4.10