OTHER POSITRON EMISSION TOMOGRAPHY/COMPUTED TOMOGRAPHY TRACERS IN DIFFERENTIAL THYROID CARCINOMA ¡BEYOND THE USE OF 2-[18F]FDG

Authors

DOI:

https://doi.org/10.21856/j-PEP.2022.3.11

Keywords:

Positron Emission Tomography / Computed Tomography, Thyroid Neoplasms, Radiopharmaceuticals

Abstract

Thyroid cancer is a common endocrinological malignancy worldwide, accounting for 3% of the global incidence of all cancers. Meta-analyses, systematic reviews, and descriptive reviews mention the use of positron emission tomography / computed tomography (PET/CT) as an alternative to morphological imaging such as computed tomography or magnetic resonance imaging to clarify the diagnosis. The aim: analysis of positron emission tomography/computed tomography tracers in the differential diagnosis of thyroid carcinomas.

Materials and methods: Review about PET/CT tracers different than 2-[18F] fluorodeoxyglucose (FDG) in patients with diagnosed differentiated thyroid carcinoma.

Evidence Synthesis: PET/CT is an alternative to morphological diagnosis imaging when is inconclusive or negative due to the suspicion of tumor persistence or recurrence, elevation of tumor markers, dedifferentiation thyroid carcinoma, non-conventional therapeutic options. 2-[18F] FDG is the most uses a tracer, but there are scenarios where can be negative or inconclusive, for this reason, in recent years other PET tracers have been used: [124I] NaI, [18F] Tetrafluoroborate, [68Ga] Ga-NOTE-PRGD2 or [18F] AIF-NOTE-PRGD2, [68Ga] Ga-DOTA-FAPI, [18F] Fluorocholine or [11C] C-Choline, [18F] or [68Ga] Ga-PSMA, [68Ga] Ga DOTA-TATE/TOC/NOC/LAN, [18F]-FAZA, L-[methyl-11C] Methionine and [89Zr] DFO-PAS200-Fab.

Conclusions. There are multiple radiopharmaceuticals different than 2-[18F] FDG, which can be adequate in the context of differentiated thyroid carcinoma: 2-[18F] FDG PET/CT negative, TENIS syndrome, radioiodine-refractory thyroid cancer suspected, thyroid dedifferentiated carcinoma, and some cases theragnostic tools.

References

Miranda-Filho A, Lortet-Tieulent J, Bray F et al. Lancet Diab Endocrinol 2021;9: 225-234. http://doi.org/10.1016/S2213-8587(21)00027-9.

Schlumberger M, Leboulleux S. Nat Rev Endocrinol 2021;17: 176-188. http://doi.org/10.1038/s41574-020-00448-z.

Brauckhoff K, Biermann M. Curr Opin Endocrinol Diab Obes 2020;27(5): 335-344. http://doi.org/10.1097/MED.0000000000000574.

Vaquero JJ, Kinahan P. Annu Rev Biomed Eng 2015;17: 385-414. http://doi.org/10.1146/annurev-bioeng-071114-040723.

Liu H, Wang X, Yang R, et al. Biomed Res Int 2018;2018: 2149532. http://doi.org/10.1155/2018/2149532.

Schütz F, Lautenschläger C, Lorenz K, Haerting J. Eur Thyroid J 2018;7: 13-20. http://doi.org/10.1159/000481707.

Sheikh A, Polack B, Rodriguez Y, Kuker R. Mol Imaging Radionucl Ther 2017;26(1): 50-65. http://doi.org/10.4274/2017.26.suppl.06.

Zampella E, Klain M, Pace L, Cuocolo A. Diagn Interv Imaging 2021;S2211-5684(21): 00085-1. http://doi.org/10.1016/j.diii.2021.04.004.

Kumar K. Ghosh A. Molecules 2021;26: 414. http://doi.org/10.3390/molecules26020414.

Grewal RK, Ho A, Schöder H. Semin Nucl Med 2016;46(2): 109-118. http://doi.org/10.1053/j.semnuclmed.2015.10.010.

De la Vieja A, Riesco-Eizaguirre G. Cancers (Basel) 2021;13(5): 995. http://doi.org/10.3390/cancers13050995.

Gulec SA, Kuker RA, Goryawala M, et al. Thyroid 2016;26(3): 441-448. http://doi.org/10.1089/thy.2015.0482.

Wu D, Ylli D, Heimlich SL, et al. Thyroid 2019;29(11): 1-44. http://doi.org/10.1089/thy.2018.0598.

Kist JW, de Keizer B, van der Vlies M, et al. J Nucl Med 2016;57: 701-707. http://doi.org/10.2967/jnumed.115.168138.

Santhanam P, Taieb D, Solnes L, et al. Clin Endocrinol (Oxf) 2017;86(5): 645-651. http://doi.org/10.1111/cen.13306.

Jiang H, DeGrado TR. Theranostics 2018;8(14): 3918-3931. http://doi.org/10.7150/thno.24997.

Dittmann M, Gonzalez Carvalho JM, Rahbar K, et al. Eur J Nucl Med Mol Imaging 2020;47(11): 2639-2646. http://doi.org/10.1007/s00259-020-04727-9.

Khoshnevisan A, Jauregui-Osoro M, Shaw K, et al. EJNMMI Res 2016;6: 34. http://doi.org/10.1186/s13550-016-0188-5.

O’Doherty J, Jauregui-Osoro M, Brothwood T, et al. J Nucl Med 2017;58: 1666-1671. http://doi.org/10.2967/jnumed.117.192252.

Jiang H, Schmit NR, Koenen AR, et al. EJNMMI Res 2017;7(1): 90. http://doi.org/10.1186/s13550-017-0337-5.

Wang C, Zhang X, Yang X, et al. Endocrine-Related Cancer 2018;25: 653-663. http://doi.org/10.1530/ERC-18-0007.

Parihar AS, Mittal BR, Kumar R, et al. Thyroid 2020;30(4): 557-567. http://doi.org/10.1089/thy.2019.0450.

Cheng W, Feng F, Ma C, Wang H. Onco Targets Ther 2016;9: 1415-1423. http://doi.org/10.2147/OTT.S99166.

Cheng W, Wu Z, Liang S, et al. PLOS ONE 2014;9(6): e100521. http://doi.org/10.1371/journal.pone.0100521.

Giesel FL, Kratochwil C, Lindner T, et al. J Nucl Med 2019;60(3): 386-392. http://doi.org/10.2967/jnumed.118.215913.

Wu J, Liao T, Huang Y, et al. Res Square 2021. http://doi.org/10.21203/rs.3.rs-381707/v1.

Kratochwil C, Flechsig P, Lindner T, et al. J Nucl Med 2019;60(6): 801-805. http://doi.org/10.2967/jnumed.119.227967.

Bertagna F, Albano D, Giovanella L, et al. Endocrine 2019;64: 203-208. http://doi.org/10.1007/s12020-019-01841-z.

Piccardo A, Trimboli P, Puntoni M, et al. Thyroid 2019;29(4): 549-556. http://doi.org/10.1089/thy.2018.0552.

Ciappuccini R, Licaj I, Lasne-Cardon A, et al. Thyroid 2021;31(5): 800-809. http://doi.org/10.1089/thy.2020.0555.

de Vries LH, Lodewijk L, Braat AJAT, et al. EJNMMI Res 2020;10: 18. http://doi.org/10.1186/s13550-020-0610-x.

Sollini M, di Tommaso L, Kirienko M, et al. EJNMMI Res 2019;9(1): 93. http://doi.org/10.1186/s13550-019-0559-9.

Lawhn-Heath C, Yom SS, Liu C, et al. EJNMMI Res 2020;10(1):128. http://doi.org/10.1186/s13550-020-00720-3.

Bychkov A. Sci Rep 2017;7(1): 5202. http://doi.org/10.1038/s41598-017-05481-z.

Hofman MS. Radiographics 2015;35(2): 500-516. http://doi.org/10.1148/rg.352140164.

Alves Mourato F, Amorim Almeida M, Teixeira Brito AE. Clin Transl Imaging 2020;8: 365-375. http://doi.org/10.1007/s40336-020-00390-0.

Ocak M, Demirci E, Kabasakal L, et al. Nucl Med Commun 2013;34(11): 1084-1089. http://doi.org/10.1097/MNM.0b013e328364eaab.

Binse I, Poeppel TD, Ruhlmann M, et al. J Nucl Med 2016;57: 1512-1517. http://doi.org/10.2967/jnumed.115.171942.

Roll W, Riemann B, Schäfers M, et al. Clin Nucl Med 2018;43(10): e346-e351. http://doi.org/10.1097/RLU.0000000000002219.

Nakajo M, Jinguji M, Tani A, et al. Mol Imaging Biol 2020;22(6): 1609-1620. http://doi.org/10.1007/s11307-020-01516-6.

Holm Adamsen TC, Biermann M. Clin Thyroidol 2020;32: 480-483. http://doi.org/10.1089/ct.2020;32.480-483.

Jochumsen MR, Iversen P, Arveschoug AK. Endocrinol Diab Metab Case Rep 2018;2018: 17-0151. http://doi.org/10.1530/EDM-17-0151.

Harris SM, Davis JC, Snyder SE, et al. J Nucl Med 2013;54(11): 1902-1908. http://doi.org/10.2967/jnumed.112.118125.

Peplau E, De Rose F, Reder S, et al. Thyroid 2020;30(9): 1314-1326. http://doi.org/10.1089/thy.2019.0670.

Downloads

Published

2022-09-15

How to Cite

Acuña Hernandez, M., Vallejo Armenta, P., Cancino Ramos, U., Sánchez Ordúz, L., Casanova Triviño, P., & Cadavid Blanco, L. (2022). OTHER POSITRON EMISSION TOMOGRAPHY/COMPUTED TOMOGRAPHY TRACERS IN DIFFERENTIAL THYROID CARCINOMA ¡BEYOND THE USE OF 2-[18F]FDG. Problems of Endocrine Pathology, 79(3), 81-89. https://doi.org/10.21856/j-PEP.2022.3.11